IPM & Breeders Day – February 8th, 2023 Meadow Ridge Enterprises Ltd

Queens Produce Superior Workers

ask

The Saskatraz Project

Objective: To develop productive, gentle honeybees with tolerance to mites and brood diseases

By: Albert J. Robertson The Saskatchewan Honeybee Breeding and Selection Program

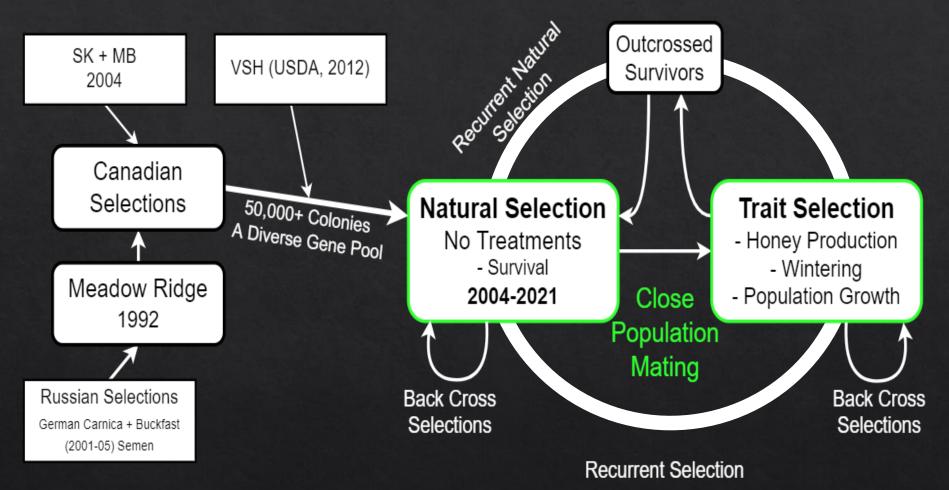
Current Honeybee Health Issues

Varroa Viruses Miticides + Pesticides * Nutrition

Outline

- Saskatraz Breeding and Selection Program
- Biomarker Development (Microsatellites, Proteomics, Micro and Kinome Arrays)
- Screening Saskatraz Colonies for Virus Susceptibility
- Saskatraz Hybrid Project
 - Olivarez Honey Bees Inc. Orland, CA <u>www.OHBees.com</u>
- Combined Miticide Treatment Experiments with selected and unselected stock
- Please visit <u>www.saskatraz.com</u> for reviews and publications
- Please visit <u>bit.ly/Saskatraz</u> for a comprehensive review

Saskatraz Breeding Program


Primary Selection Criteria:

- Honey Production
- Wintering Ability
- Spring Population Growth
- Varroa Resistance and Suppression
- Resistance to Brood Diseases (Chalk Brood, AFB, EFB, etc.)
- Viruses and Nosema Susceptibility

Breeding methods used to select and enrich for important traits (natural selection, out crossing, back crossing, recurrent selection, progeny analyses and closed population mating).

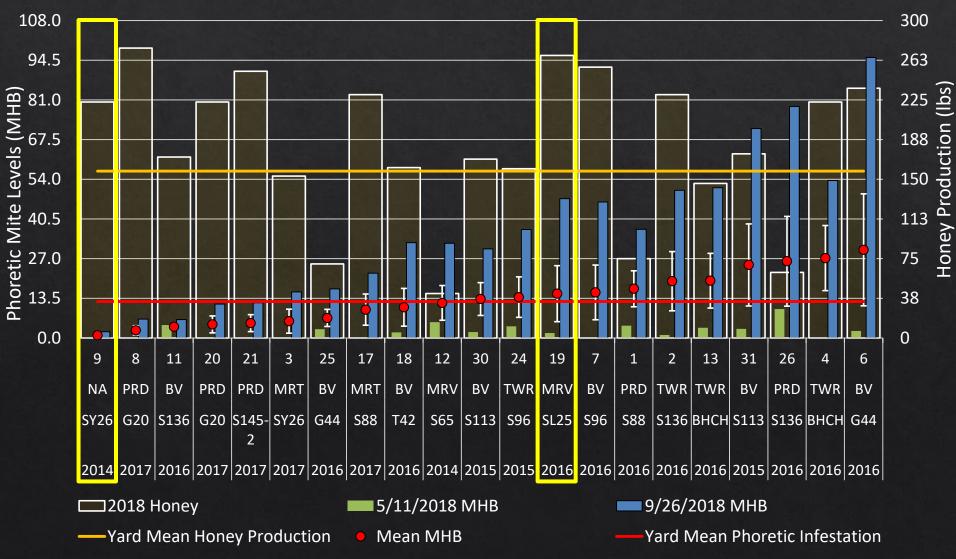
IPM & Breeders Day – February 8th, 2023

Saskatraz Breeding Program Logistics

There are currently: **17 Saskatraz Families**

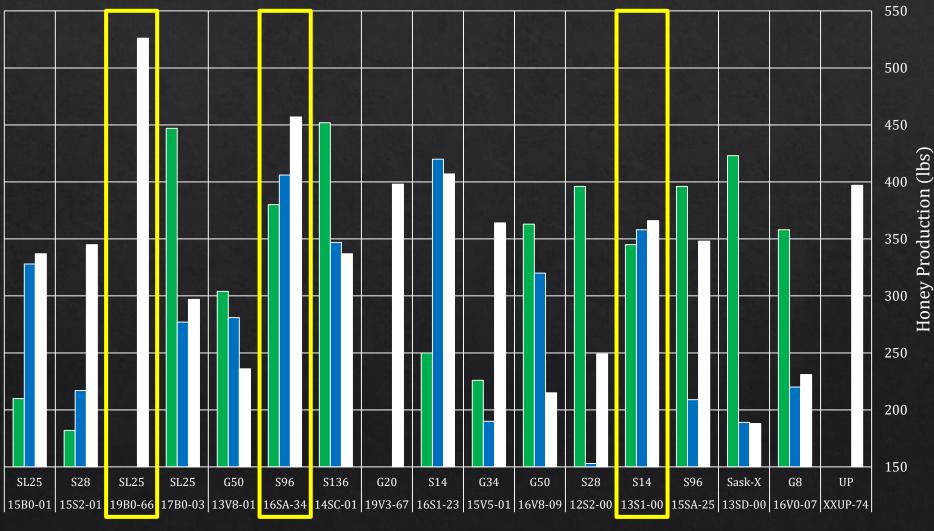
Stock Distributed Yearly Since 2006

Saskatraz Breeding Program Logistics


Progeny Analysis

To Stabilize Traits Up to 30 colonies from best breeders Best daughters crossed between apiaries (SY26 x S96) Kokay's - SY26 Ben's - S96 Marciniak's - SL25 Trucker - S88 Scott's - S113 No Treatments Bainsville Martins Economic Trait Selection

Honey Production + Winter Survival Annual Selection from 50+ Apiaries (1500+ Colonies) Priddy's Murphy's Tower


Natural Selection for Varroa Tolerance

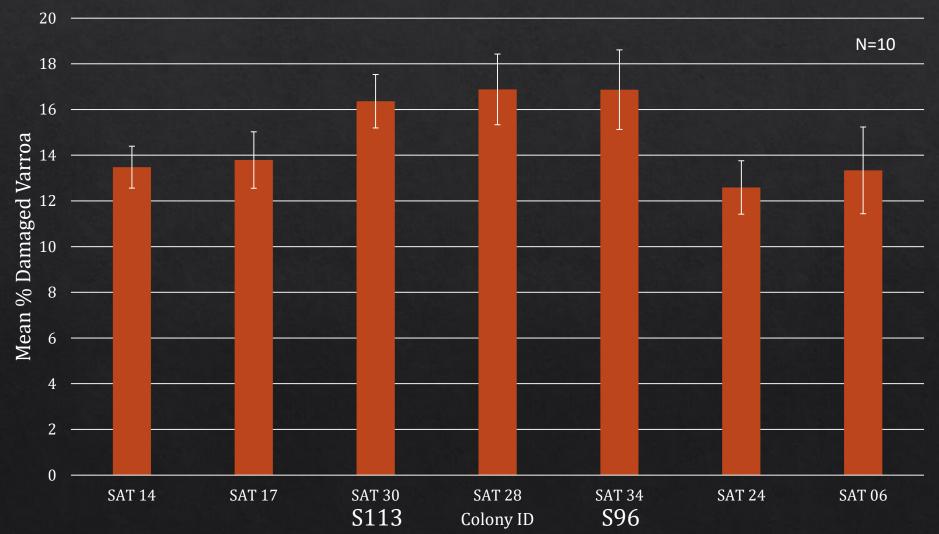
2018 Bainsville Phoretic Mite Levels and Honey Production Data

Selection for Honey Production

2019-2021 Priddy's Honey Production Data

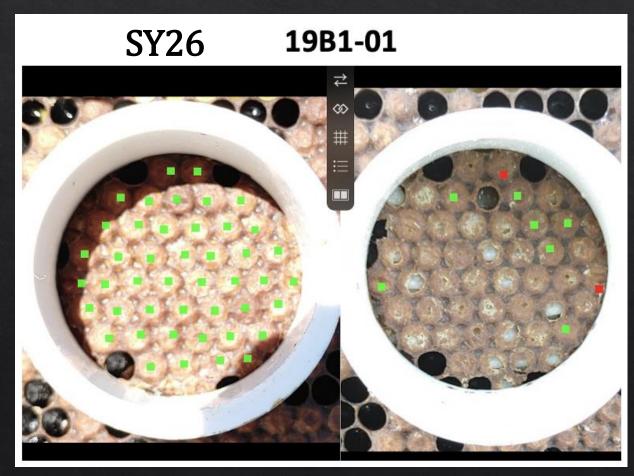
■ 2019 Honey ■ 20

■ 2020 Honey ■ 2021 Honey


Progeny Analyses – S113

Adult Bee % Varroa Infestation for Eight S113 Daughters

Mite Biting Analysis


Percentage of Damaged Varroa Mites Over 64 Day Period

Mite Biting

Progeny Analyses for Varroa Resistance

Unhealthy Brood Odor Assay

Developed by Kaira Wagoner and Colleagues at UNCG

UBO Assay Score: 84.4%

Before

After 2 Hours

UBO Progeny Analysis – SY26 Daughters

B8 (21B1-113) Honey Production: 103% UBO Assay Score: 55.6%

B16 (21B1-124) Honey Production: 68% UBO Assay Score: 79.5%

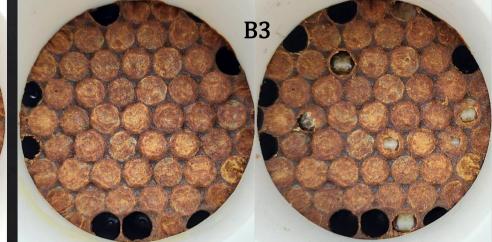
B14 (21B1-123) Honey Production: 163% UBO Assay Score: 64.3%

B17 (21B1-118) Honey Production: 155% UBO Assay Score: 7.0% IPM & Breeders Day – February 8th, 2023

UBO Assays of Unselected Colonies

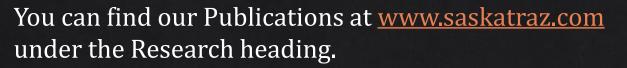
Australian Colonies

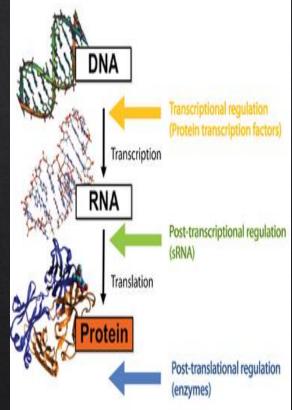
Caucasian Colonies


Before

After 2 Hours

Before

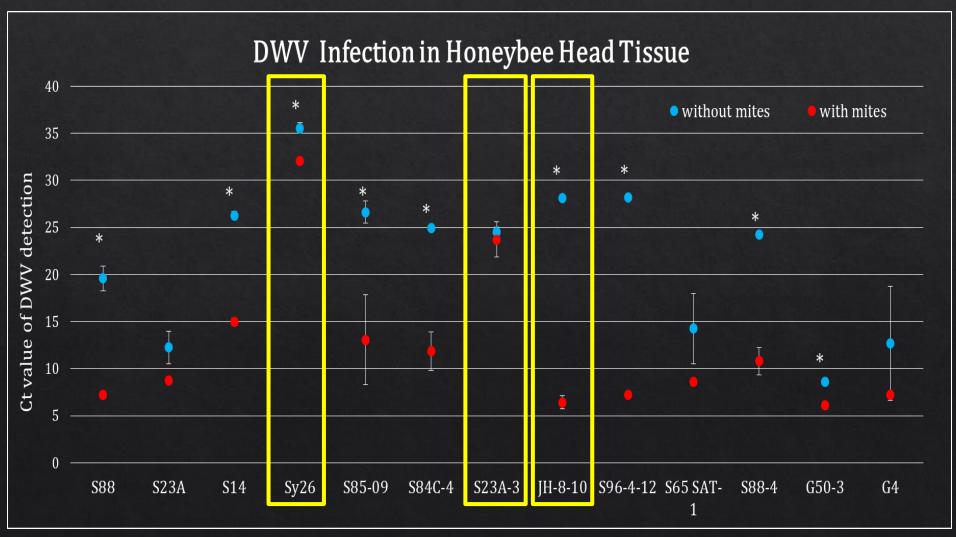

After 2 Hours



Biomarker Development

- Microsatellites (SNP Discovery)
- Microarrays (transcripts)
- Proteins
- Kinome Arrays (signal transduction)
- $(DNA) \rightarrow (RNA) \rightarrow (Protein) \rightarrow (Signal Transduction)$

Differentially Expressed Transcripts in G4 and S88 In Varroa Infected and Uninfected Pupa


Category	Gene	S88- /G4-	S88+/ G4+	Honey Bee Protein	
Signal Transduction (Pupa)	GB17702-RA		2.40	Cadherin-87A-like	
	DB777873		2.83	Neurobeachin-like	
	GB14355-RA	4.45	2.69	Anosmin-1-like	
Lipids (Pupa)	GB11723-RA		6.88	Apolipoprotein D-like isoform 2	
	GB18070-RA		2.23	Acyl-CoA Delta(11) desaturase-like	
	GB13246-RA		0.47	Phospholipase A1 member A-like isoform 1	
	GB16889		3.41	Esterase E4-like	
Cytochrome P450 (Pupa)	GB11754-RA		0.31	Cytochrome P450 6a14 isoform 1	
	GB12136-RA		4.08	Cytochrome P450 6A1	
Immune (Pupa)	GB13473-RA		2.07	Apidaecins type 73	

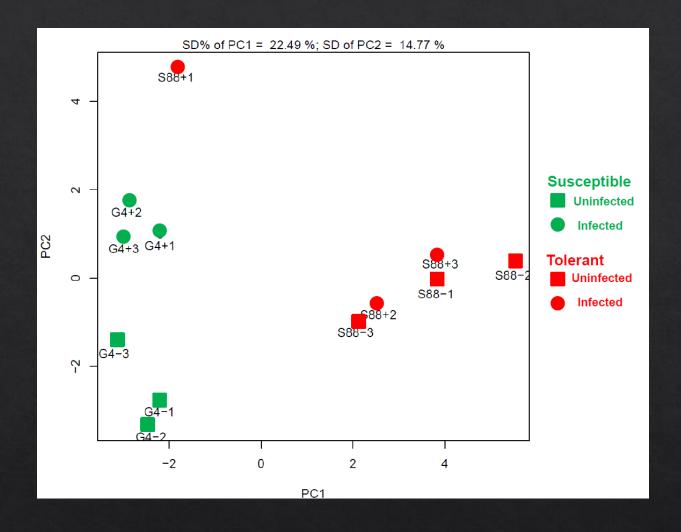
Survivor Colonies

Why do some colonies survive for extended periods in natural selection apiaries?

- S88 for 58 Months
- SY26 for 70 Months
- Grooming Behaviour (Mite Biters)
- VSH/Hygienic Activity
- Supersedure and Re-queening Success
- Stress Resistance Express higher levels of detoxification factors for pesticide, miticides and environmental stressors - Apolipoprotein D, Esterase E4, Cytochrome P450
- Better Foraging Activity = Better Nutrition
- Saskatraz showing stable Vitellogenin transcript levels
- Virus Immunity (Innate Immunity)

DWV Analysis of Saskatraz Phenotypes with and without Mites

IPM & Breeders Day – February 8th, 2023


Kinome Analysis of Colony Phenotypes

	http://www.greendiary.com/hawaii-bees infested-by-destructive-varroa-mites.html

Printing and Validation of the Bee Specific Peptide Array. A) The arrays were printed by a commercial partner (JPT Technologies). For each array each spot is printed in triplicate within each block. Each block is then printed in triplicate for nine technical repeats of each peptide. This image, taken as a quality control step in array production, illustrates the consistency and reproducibility to peptide spotting. B) An image of a data scan of a representative array that had been used for analysis of a whole bee sample. All of the arrays of this work were of comparable quality with respect to the clarity and consistency of peptide phosphorylation. A clear and consistent pattern of extents of peptide phosphorylation is apparent across the three printed blocks.

	Protein	ID	Sequence	Р
	TAK1 kinase	043318	YMTNNKGSAAWMAPE	0.001
	TAK1 kinase	043318	CDLNTYMTNNKGSAA	0.003
Innate Immunity	Mitogen-activated protein kinase kinase kinase_5	035099	TETFTGTLQYMAPE	0.009
	Nuclear factor NF-kappa-B p110 subunit Rel-p110	Q94527	YIQLKRPSDGATSEP	0.005
	Transcription_factor p65 Nuclear factor NF-kappa-B	Q04206	IQLKRPSDGALSEP	0.005
	Focal adhesion kinase 1 FADK1	Q05397	IVDEEGDYSTPATRD	0.005
	AP-1 complex subunit beta-1	035643	VEGQDMLYQSLKLTN	0.008
Metabolism	ATP synthase_subunit_beta	P06576	TSKVALVYGQMNEPP	0.004
	Na-K transporting ATPase subunit alpha1	P05023	ICKTRRNSLFRQGM	0.009
	Glucose-6-phosphate isomerase	P06744	GPRVHFVSNIDGTHI	0.005
	Isocitrate_dehydrogenase subunit_beta,	043837	TKDLGGQSSTTEF	0.006
	Ribosomal protein S6 kinase alpha	P51812	DSEFTCKTPKDSPGV	0.006
Stress	Elongation factor 2 (EF-2)	P13639	YMTNNKGSAAWMAPECDLNTYMTNNKGSAATETFTGTLQYMAPEYIQLKRPSDGATSEPIQLKRPSDGALSEPIQLKRPSDGALSEPIVDEEGDYSTPATRDVEGQDMLYQSLKLTNTSKVALVYGQMNEPPICKTRRNSLFRQGMICKTRRNSLFRQGMGPRVHFVSNIDGTHITKDLGGQSSTTEFDSEFTCKTPKDSPGVILEQSWGSPKITKDGSIFWCNLSPNGGSYVDPHTYEDPNQAVLREKRRSTGVVHLPSQTAQGMDYLHAKNII	0.007
	60_kDa_heat_shock_protein	P10809	ILEQSWGSPKITKDG	0.016
	Superoxide dismutase	P07895	-	0.008
Other	Ephrin type-A receptor 4 EPH-like kinase 8 (EK8)	P54764	SYVDPHTYEDPNQAV	0.006
	PRKC_apoptosis_WT1 regulator_protein	Q62627	LREKRRSTGVVHLPS	0.006
Guici	A-Raf Kinase	P10398	5SIFWCNLSPNGG0.4SYVDPHTYEDPNQAV0.7LREKRRSTGVVHLPS0.8QTAQGMDYLHAKNII0.	0.010
	Intestinal cell kinase (ICK)	Q9UPZ9	CKIRSRPPYTDYVSTRW	0.010

Biomarker Peptides: Differently Phosphorylated Peptides Between Pupae Collected from Varroa Susceptible and Tolerant Colonies.

Clustering of Kinome Data. Kinome datasets were subjected to hierarchical clustering and PCA analysis. Pupae from two colonies (G4 and S88) were selected for either the presence (+) or absence (-) of Varroa mites. Principle Component Analysis: Separation of the samples on the basis of phenotype is clearly observed with further distinction with the susceptible, but not tolerant, samples on the basis of infection status.

Saskatraz Hybrid Project

Objectives

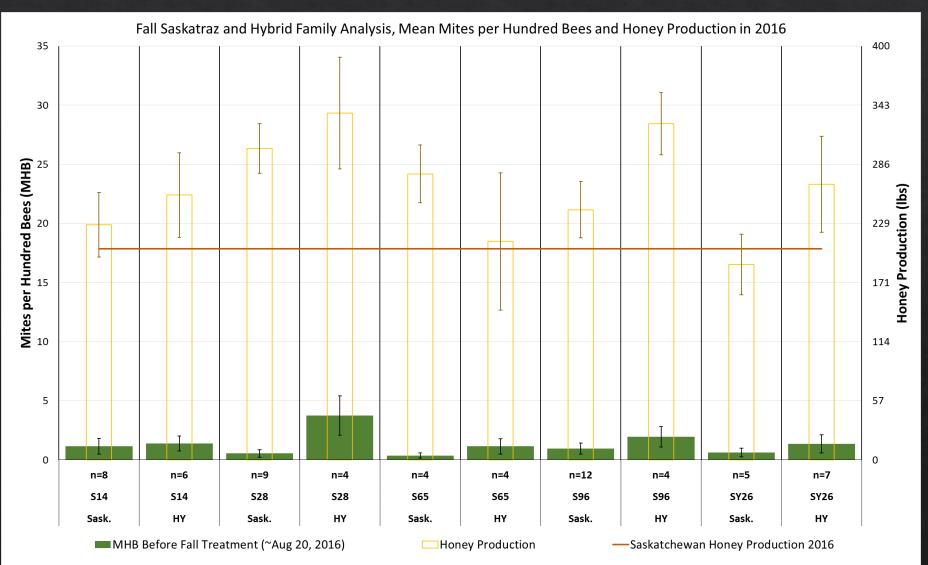
- To commercialize and distribute Saskatraz Breeding Stock to commercial beekeepers.
- Every year colonies are selected for honey production, overwintering ability, temperament, mite resistance and brood diseases.
- This project serves to provide Saskatraz hybrid queens for reasonable prices and results in increasing the frequency of alleles associated with economic traits in commercial populations.
- Saskatraz distribution
 - North America
 - Iran
 - Middle East
 - Afghanistan
 - Ukraine
 - Turkey
 - South Korea
 - Virgin Islands, USA

- In progress
 - Australia
 - Hawaii, USA
 - Chile
 - Russia
 - Poland

Saskatraz Breeding Program

Behaviour Assays – Orland, CA:

- 1. Temperament (1 sting, 2 sting, 3 sting)
- 2. *Behaviour on comb (dancing, calmness, etc.)
- 3. Low temperature flight
- 4. *+Queen retinue + mating
- 5. +Swarming tendency and superseding success
- 6. +Pollen storage and propolis production
- 7. +Brood pattern
- 8. *+Worker uniformity
- 9. +Queen colour and markings
- 10. +Varroa Assays


Varroa Assay

SY26x26 Martins (Hygienic Behavior; 100%U+100%R)

Saskatraz Hybrid Performance

IPM & Breeders Day – February 8th, 2023

Summary and Work in Progress

We can select Saskatraz families with good honey production, wintering and Varroa resistance, but is difficult to balance the phenotypes. Varroa resistance is variable in the progeny because of the nature of bee genetics.

Our focus is aimed at stabilizing Varroa resistance using extensive progeny analysis with marker assisted selection and the UBO assay to speed up the selection process.

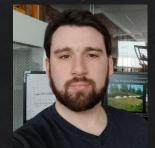
Also looking at the variability in virus susceptibility in our strains in collaboration with USDA Baton Rouge, LA.

Saskatraz Review Presentation Bit.ly/Saskatraz

Questions?

Saskatraz Team Members

Neil Morrison Eric and John Pederson Tom Robertson



Dr. Philip Griebel

Wayne Connor

Mohammad Mostajeran

Colton Rutherford

Dr. Abdullah Ibrahim

Dr. Syed Shaw

Antonio Munoz Cerna

Dr. Scott Napper

Edmundo Munoz Cerna

Sanjie Jiang and Dr. Xiao Qiu

IPM & Breeders Day – February 8th, 2023

Acknowledgements

- Meadow Ridge Enterprises Ltd., Saskatchewan Beekeepers, and BeeMaid Honey.
- Saskatchewan Agricultural Development Fund (2009-2014); Agriculture Council of <u>Saskatchewan (MB, AB, BC and Yukon)(2009-2014);</u> Project Apis M (2021-2022).
- USDA Bee Lab, Baton Rouge, LA (Dr. Michael Simone-Finstrom, Dr. Arian Avalos, Dr. Bob Danka)
- VIDO (Dr. Philip Griebel, Dr. Scott Napper and Wayne Connor).
- University of Saskatchewan Food and Bio Product Sciences (Dr. Xiao Qiu, Sanjie Jiang and Jin Wang).
- Toxicology Center, University of Saskatchewan (Dr. John Giesy, Dr. Garry Codling, Yahya Nagar).
- GenServe Labs (Bruce Mann, Dr. Yves Plante, and Dr. Steven Creighton, SRC).
- Mohammad Mostajeran (R. A. 2008-2013) and Dr. Syed Qasim Shah (2010-2012).
- Dr. Abdullah Ibrahim (Research Associate, Summer 2007).
- John and Eric Pedersen breeder stock multiplication and selection (2006).
- Meadow Ridge Staff; Tom, Jenny, and Cecilia Robertson, Neil Morrison, Rob Peace, Yang Tan, Colton Rutherford, Héloise Garez, Antonio and Edmundo Munoz Cerna
- Collaborators: John Gruszka (Prince Albert, Sask) Dr. Solignac (Paris, France), Dr. Ralph Buchler (Germany), Dr. Rob Currie (U of M), S. Cobey (Davis, CA), Geoff Wilson (Prince Albert, Sask).