

Objective: To develop productive, gentle honeybees with tolerance to mites and brood diseases

By: Albert J. Robertson The Saskatchewan Honeybee Breeding and Selection Program

Current Honeybee Health Issues

• Varroa

• Viruses

- Miticides
- Pesticides
- Nutrition

Outline

- Review of Saskatraz Breeding Program
- Saskatraz Hybrid Projects
- Selection and Molecular Analysis of Extreme and Intermediate Phenotypes for Varroa Resistance and Susceptibility -Biomarker Development (Micro and Kinome Arrays) and Virus Screening
- Please find Published Papers and More Information on the Saskatraz Project at <u>www.saskatraz.com</u>

Saskatraz Breeding Program

Primary Selection Criteria:

- 1. Honey Production
- 2. Wintering Ability
- 3. Mite Resistance and Suppression
- 4. Resistance to Brood Diseases (Chalk Brood, AFB, EFB, etc.)
- 5. Viruses and Nosema Susceptibility

Breeding methods used to select and enrich for important traits (natural selection, out crossing, back crossing, recurrent selection, progeny analyses and closed population mating).

Saskatraz Breeding Program Logistics

See <u>www.saskatraz.com</u> for review

The Original Saskatraz Apiary

Saskatraz natural selection yard site fall 2006 – fenced. Selection for this Saskatraz yard site is a death sentence.

Natural Selection for Varroa Tolerance

2018 Bainsville Phoretic Mite Levels and Honey Production Data

Natural Selection for Varroa Tolerance

2019 Bainsville Phoretic Mite Levels and Honey Production Data

Progeny Analyses – S113

2010-2011 Adult Bee % Varroa Infestation for Eight S113 Daughters

Nosema Spore counts in live bees from S88 family

Saskatraz Hybrid Projects

Objectives

- To commercialize and distribute Saskatraz Breeding Stock to commercial beekeepers.
- Every year colonies are selected for honey production, overwintering ability, temperament, mite resistance and brood diseases.
- This project serves to provide Saskatraz hybrid queens for reasonable prices and results in increasing the frequency of alleles associated with economic traits in commercial populations.
- Saskatraz stock distribution
 - North America
 - Iran
 - Middle East (UAE, Saudi Arabia, etc.)
 - Afghanistan
 - Ukraine
 - Turkey
 - South Korea
 - Virgin Islands, USA

- In progress
 - Australia
 - Hawaii, USA
 - Chile
 - Russia
 - Poland

Saskatraz – Orland, USA

In 2019 we sent 145 pre-selected Saskatraz breeder queens to be reselected in March 2020.

The California Tech Transfer Team, Bee informed Partnership has independently evaluated our Saskatraz breeding stock in late February early March in past years. An example is shown below.

Colony Number	Colony ID	Brood Pattern	Chalk- brood Presence (+/-)	Tempera -ment	Pollen placement	Queen Presence (+/-)	Queen Mark Presence (+/-)	Phoretic Mite Infestation (MHB)	%Mite Infestation in Worker Brood	%Mite Infestation in Drone Brood	Tech Team Hygienic Behaviour Test	Observation
7	S65 Robin 14	Excellent	-	1	Average	+	+	0	0	0	93%0 / 80%R	Green mark on queen
24	Y26 x 26 Martin 14	Good	-	1	Average	+	-	0	0	-	99%0 / 99%R	No drone brood; no visible mark on queen
25	Y26 x 26 Martin 14	Excellent	-	1	Average	+	+	0	0	0	100%0 / 100%R	-
37	G44 JHN 12-9 B.V. 14	Excellent	-	1	Average	+	+	0	0	-	93%0 / 75%R	No Drone

Y26x26 Martins (Hygienic Behavior; 100%U+100%R)

Retinue

Abu Dhabi, UAE

ApiArab Expo

Feb 2018

Saskatraz – Hatta UAE

A. Mellifera Yemenitica

Biomarker Development

- Microsatellites (SNP Discovery)
- Microarrays (transcripts)
- Proteins
- Kinome Arrays (signal transduction)

 $(DNA) \rightarrow (RNA) \rightarrow (Protein) \rightarrow (Signal Transduction)$

Differentially Expressed Transcripts in G4 and S88 In Varroa Infected and Uninfected Pupa

Category	Gene	S88- /G4-	S88+/ G4+	Honey Bee Protein
Signal	GB17702-RA		2.40	Cadherin-87A-like
Transduction	DB777873		2.83	Neurobeachin-like
(Pupa)	GB14355-RA	4.45	2.69	Anosmin-1-like
	GB11723-RA		6.88	Apolipoprotein D-like isoform 2
Linida (Duna)	GB18070-RA		2.23	Acyl-CoA Delta(11) desaturase-like
Lipius (Pupa)	GB13246-RA		0.47	Phospholipase A1 member A-like isoform 1
	GB16889		3.41	Esterase E4-like
Cytochrome	GB11754-RA		0.31	Cytochrome P450 6a14 isoform 1
P450 (Pupa)	GB12136-RA		4.08	Cytochrome P450 6A1
Immune (Pupa)	GB13473-RA		2.07	Apidaecins type 73

DWV Analysis of Saskatraz Phenotypes with and without Mites

DWV Levels in Response to Varroa Mite Infestation and Miticide Treatments

Quantitative measurements of DWV in two varroa tolerant (SY26 and S14) and one susceptible (JH-8-10) colony in response to varroa mite infestation and **miticide treatments.** y axis: Ct values for DWV detection (mean \pm SEM, N=3); x axis: three colonies (SY26, S14 and JH-8-10). A. DWV in the head with and without varroa mite; B. DWV in the head with and without miticide treatments. The multi-treatment comparisons of Ct values used the LSD (least significant difference) method for difference analysis.

Kinome Analysis of Colony Phenotypes

Printing and Validation of the Bee Specific Peptide Array. A) The arrays were printed by a commercial partner (JPT Technologies). For each array each spot is printed in triplicate within each block. Each block is then printed in triplicate for nine technical repeats of each peptide. This image, taken as a quality control step in array production, illustrates the consistency and reproducibility to peptide spotting. B) An image of a data scan of a representative array that had been used for analysis of a whole bee sample. All of the arrays of this work were of comparable quality with respect to the clarity and consistency of peptide phosphorylation. A clear and consistent pattern of extents of peptide phosphorylation is apparent across the three printed blocks.

	Protein	ID	Sequence	Р
	TAK1 kinase	043318	YMTNNKGSAAWMAPE	0.001
	TAK1 kinase	043318	CDLNTYMTNNKGSAA	0.003
	Mitogen-activated protein kinase kinase kinase_5	035099	TETFTGTLQYMAPE	0.009
Innato Immunity	Nuclear factor NF-kappa-B p110 subunit Rel-p110	Q94527	YIQLKRPSDGATSEP	0.005
	Transcription_factor p65 Nuclear factor NF-kappa-B	Q04206	IQLKRPSDGALSEP	0.005
	Focal adhesion kinase 1 FADK1	Q05397	IVDEEGDYSTPATRD	0.005
	AP-1 complex subunit beta-1	035643	VEGQDMLYQSLKLTN	0.008
	ATP synthase_subunit_beta	P06576	TSKVALVYGQMNEPP	0.004
Motobolism	Na-K transporting ATPase subunit alpha1	P05023	ICKTRRNSLFRQGM	0.009
Metabolisili	Glucose-6-phosphate isomerase	P06744	GPRVHFVSNIDGTHI	0.005
	Isocitrate_dehydrogenase subunit_beta,	P05023ICKTRRNSLFRQGM0P06744GPRVHFVSNIDGTHI0043837TKDLGGQSSTTEF0P51812DSFFTCKTPKDSPGV0	0.006	
	Ribosomal protein S6 kinase alpha	P51812	DSEFTCKTPKDSPGV	0.006
Stress	Elongation factor 2 (EF-2)	P13639	KVMKFSVSPVVRVAV	0.007
Responses	60_kDa_heat_shock_protein	P10809	ILEQSWGSPKITKDG	0.016
	Superoxide dismutase	P07895	SIFWCNLSPNGG	0.008
	Ephrin type-A receptor 4 EPH-like kinase 8 (EK8)	P54764	SYVDPHTYEDPNQAV	0.006
Other	PRKC_apoptosis_WT1 regulator_protein	Q62627	LREKRRSTGVVHLPS	0.006
	A-Raf Kinase	P10398	QTAQGMDYLHAKNII	0.010
	Intestinal cell kinase (ICK)	Q9UPZ9	CKIRSRPPYTDYVSTRW	0.010

Biomarker Peptides: Differently Phosphorylated Peptides Between Pupae Collected from Varroa Susceptible and Tolerant Colonies.

Clustering of Kinome Data. Kinome datasets were subjected to hierarchical clustering and PCA analysis. Pupae from two colonies (G4 and S88) were selected for either the presence (+) or absence (-) of Varroa mites. Principle Component Analysis: Separation of the samples on the basis of phenotype is clearly observed with further distinction with the susceptible, but not tolerant, samples on the basis of infection status.

Colony Phenotypes

The survival time, mean phoretic mite infestation, total honey production, and biomarker susceptibility scores for 8 colony phenotypes are shown here. Error bars are shown as ±SE of the mean phoretic mite level where N is the number of samples tested to calculate the mean where S65-15 BC is represented only by a single sample. The purple dots represent the biomarker susceptibility scores calculated from the kinome array (n=299 peptides) analyses of dark-eyed pupae. Each dot represents a score calculated from one pupa.

Conclusions:

• Possible to identify productive and mite tolerant colony phenotypes, and improve by established breeding procedures (back crossing, out crossing, re-current selection and progeny analyses).

• Colony phenotypes are difficult to stabilize because of considerable variability in progeny, from selected breeders. This may be due, in part, to multiple mating (sub-families), queen events (supersedure), high recombination rates, epistatis, and genotype – environment interactions (epigenetic effects). Evolutionary characteristic?

• New selection tools (biomarkers) for identifying phenotypes expressing genes involved in varroa tolerance, pathogen resistance immunity, and productivity should help to stabilize phenotypes and assist with breeding procedures.

• Kinome analysis showed varroa tolerant colonies had increased expression of Toll-like receptors which activate innate immune responses resulting in increased anti-microbial activity (proteolytic activity, lysozyme, phagocytosis, melanizing agent phenoloxidase, etc.)

Acknowledgements

• Saskatchewan Agriculture (ADF), Agriculture Council of Saskatchewan (MB, AB, BC and Yukon), Meadow Ridge Enterprises Ltd., SBDC, Bee Maid Honey and Saskatchewan beekeepers.

• GenServe Labs (Bruce Mann, Dr. Yves Plante, and Dr. Steven Creighton, SRC).

• VIDO (Dr. Philip Griebel, Dr. Scott Napper and Wayne Connor).

• University of Saskatchewan Food and Bio product Sciences (Dr. Xiao Qiu, Sanjie Jiang and Jin Wang).

• Toxicology Center, University of Saskatchewan (Dr. John Giesy, Dr. Garry Codling and Yahya Nagar).

• Mohammad Mostajeran (R. A. 2008-2013) and Dr. Syed Qasim Shah (2010-2012).

- Yang Tan, Colton Rutherford, Héloise Garez
- Saskatchewan Bee Keeper Colony Contributors & Cooperators.
- Dr. Abdullah Ibrahim (Research Associate, Summer 2007).
- John Pedersen breeder stock multiplication and selection (2006).

• Eric Pedersen, Lyse Boisvert, Matthew Polinsky and Vika Cummins, Elizabeth Bygarski , Liam Baalim, Meghan McCullough, and David Hilger, summer students (2005-2012).

• Family members & Meadow Ridge staff; Tom, Jenny, and Cecilia Robertson, Neil Morrison, Rob Peace.

• Collaborators: John Gruszka (Prince Albert, Sask) Dr. Solignac (Paris, France), Dr. Ralph Buchler (Germany), Dr. Rob Currie (U of M), Dr. R. Danka (Baton Rouge, LA), S. Cobey (Davis, CA), Geoff Wilson (Prince Albert, Sask).